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Abstract— Non-rigid 3D registration is a technique for match-
ing 3D scans of a scene involving deformable objects. Aug-
mented reality, gesture recognition, medical imaging, and many
other computer vision and graphics applications require real-
time registration to model deformable or articulated objects.
Unfortunately, non-rigid registration is a computationally in-
tensive problem that requires careful optimization to maximize
throughput and latency. We present a FPGA+CPU acceler-
ator for real-time non-rigid 3D registration based on Tree
Reweighted Message Passing (TRW-S). We overcome memory
bound issues and scheduling limitations of conventional TRW-S
by dynamically generating the Markov Random Fields. This,
along with a bevy of other architectural optimizations, allows us
to almost saturate 1024 multipliers in a Arria 10 at 100MHz.
We achieve a 600x speed up over baseline TRW-S and our
registration architecture has up to 81x energy reduction over a
software implementation of our algorithm. We demonstrate the
performance of our system by performing real-time (20 scan
per second) registration on a complicated surgical scene.

Index Terms— Field Programmable Gate Array (FPGA), 3D
Non-Rigid Registration, Sequential Tree Reweighted Message
Passing (TRW-S), Dynamic Markov Random Field (MRF)

[. INTRODUCTION

Image registration is the fundamental computer vision
problem that matches two or more scans of an object to each
other, i.e., given two scans X,Y C R3, registration seeks
the mapping f : Y — X that corresponds to the smallest
transform 7" where: X = T(Y"). In other words, registration
indicates the simplest way to manipulate Y so the scans share
the same coordinate system.

Registration has many real time applications such as
SLAM, Stereo reconstruction object tracking etc. [1], [2],
[3]. A typical real time registration involves processing point
cloud data from an input source (e.g., an RGBD camera)
tens of times per second and mapping the 3D points from
one frame to the next. We focus specifically on the 3D
registration mapping function f : Y +— X in this work,
which is a system bottleneck for real time performance in
that it must perform a global optimization on the input data,
and is a common step in all registration based applications.

Non-rigid 3D registration is a challenging but important
class of registration where objects in a scan can deform
non-rigidly. Fig 1 provides an example of a hand that
deforms as the index finger flexes. Because the bones
curl around each other, a non-rigid registration mapping
function must be complex enough to consider all bones
when registering an entire hand. As objects become less
rigid, registration becomes more difficult as the number of

articulation points increases.

O
feature

D ———
Geodesic
Distance

(a) Hand scan X,
fingers in open position

(b) Hand scan Y,
index finger flexed

Fig. 1: Non-rigid registration of a flexing finger. Our mapping
strategy is to use the invariant “geodesic distances” in both
X and Y to correctly label Y’s features such that they map
to the same features in X

Non-rigid registration is computationally hard because a non-
linear optimization procedure is required to find the correct
pairing of the features in Fig 1. In contrast, rigid image
registration does not need to find a unique pairing of features
since a linear decomposition on any sub-set of features
can reveal the one mapping that is valid for all points in
a scan. This makes real time non-rigid registration much
more challenging. It is extremely important to solve difficult
non-rigid registration problems but unfortunately this has
traditionally been hampered by the complexity of non-rigid
mapping functions that can only achieve offline performance.
For example, surgeons have long sought to use real time
registration of soft tissue for image guidance applications [4],
[51, [6], [7] and non-rigid registration has many uses in
CV along a sliding scale of registration difficulty. Real
time pose estimation is a simpler problem useful for many
Human Computer Interaction applications such as virtual
clothing, performance capture, autonomous driving and many
others [8], [9], [10]. Therefore a general method for non-rigid
registration with online performance is very desirable.

The contributions of this work are: 1) A Real Time Non-
rigid Registration Accelerator which demonstrates perfor-
mance of 20 scans per second on a difficult medical reg-
istration problem. A distinguishing feature of the accelerator
is that it does not require “shape templates” or “object
priors” and is therefore suitable for difficult and simple non-
rigid registration problems without re-engineering. 2) The
"TRWL-S” Algorithm. We describe several novel methods
we used to transform a state of the art offline memory bound
algorithm into an online compute bound one. 3) Energy
Efficient Architecture. We analyze performance of our new
algorithm on our architecture and find a speedup of 600X
with an 81X reduction in system energy.



The paper is organized as follows: Section II summarizes
the state of the art in online non-rigid registration. Section III
details how our algorithm enables our accelerator to have
higher performance than a state of the art baseline algorithm.
Section IV describes the implementation of our novel reg-
istration architecture. Section V Evaluates the performance
of the architecture. Section VI Provides our conclusions on
this work.

II. RELATED WORK

Non-rigid 3D registration is computationally intensive. To
the best of our knowledge there is no system capable of
solving the general problem in real time. Instead, systems
achieve fast runtime with trade offs to simplify their problem.

For example, much work has focused on real time pose
estimation where object priors simplify the registration prob-
lem. Object priors are a set of rules describing plausible
configurations for a canonical object. Registration requires
finding a transform of a scan that best fit these rules and
only works on objects that adhere to these rules. This is a
simpler problem than performing registation with unknown
content. The most common priors are object skeletons which
can be articulated into the poses of interest [11], [12], [13],
[14]. These approaches cannot be applied to more complex
registrations, e.g., they are inadequate for registering pliable
objects that deform without points of articulation.

Another approach possible is to define a registration
template from the data stream itself. Newcombe et al. [1]
avoid pre-defined priors by taking one image scan to be a
canonical frame. The work achieves real time performance
by regularizing (linearizing) the fitting of input scans to
the canonical frame. They demonstrate that more complex
real time registrations are possible with this approach as
compared with skeleton templates; however the linear op-
timizer overconstrains the shape matching problem making
registration of very flexible objects difficult.

Dou et al. [9] propose another real time system that does
not require templates and is more robust than Newcombe’s to
large deformations. The registration is done using a deforma-
tion graph [15]. Although the results are compelling, a major
drawback is that the deformation graphs must be defined by
the user, which limits the generality of the technique.

In contrast, global optimization registration methods are
more general since they do not require any object priors.
For example, Chen et al. [16] acheived accurate results by
formulating the optimization problem as a Markov Random
Field (MRF). Each entry in the tensor is a cost associated
with pairing geodesic distances between features. While the
quality is high, the optimizer run time is prohibitively slow
for real time applications.

Real time global non-rigid registration is therefore possible
if an optimizer exploring the MRF problem can do so in real
time. In addition if the number of features n” that can be
described by the MREF is large enough, this approach would
be suitable for difficult registration problems.

There have been recent advances in GPU, FPGA, and
ASIC acceleration for efficient message passing based

global optimizers which explore MRF’s in linear time [17],
[18], [2], [19]. Unfortunately these approaches are revealed
to be memory bound as they must stream the MRF into the
accelerated optimizer. Fig 2 illustrates accelerator memory
bound for MRF problems sizes of Chen’s approach[20].
Fig 2 shows it is not possible to solve MRF registration
problems in real time for n > 60 with existing accelerators
because the MRF cannot be loaded into the accelerator
quickly enough.
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Fig. 2: MRF memory bandwidth scaling with problem size
(n) [20]. No proposed global optimizer accelerator system
(horizontal trends) is suitable for difficult non-rigid regis-
tration since the MRF must be streamed in. The memory
bandwidth available for transferring a global registration
problem MRF to the proposed accelerators [17], [18], [2],
[19] is not sufficient for a moderately complex registration
problem of n=60 feature points.

III. REGISTRATION ALGORITHM

Our Tree Reweighted Loaf Slice (TRWL-S) algorithm
builds on a global non-rigid registration baseline described
by Chen et al. [16] which registers scans using geodesic
distances (see Fig 1). Fig 3 illustrates how these invariant
distances can be summed into a n X n matrix that gives
feature to feature distances between all n features and
describes a global relationship between all the features in a
scan.
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Fig. 3: Matrix 3a represents a global intrinsic model of the
hand from Fig 1. The model is a list of geodesic distances
between every pair of features; x;; = |f; — f;| where:
1,7 =< 1,...,n >. Matrix 3b is the geodesic distances
between features as seen in Scan Y. The goal is to match
the features from Scan Y to X using the known distance
mappings in Matrix 3a, i.e., find the correct permutation of
i, j for Matrix 3a to Matrix 3b s.t. z; ; = yir j» = | fi — [}



To register X and Y in Fig 3 the baseline constructs a
MREF by applying a geodesic distance heuristic (GH) to each
combination of X and Y and then uses a Tree Reweighted
Message Passing (TRW-S) global optimizer to find a best
matching. Since GH+TRW-S : Y +— X, we refer to the
baseline as "GH+TRW-S” to denote the registration function
we accelerate. Although GH+TRW-S is global and requires
no object specific priors, the trade off is it has greatly
increased computation compared with the related work and
online performance is very difficult to achieve.

The first compute heavy step is: Geodesic Heuristic (GH)
where the registration is mapped as an energy minimization
MREF problem by calculating a energy cost of matching pairs
of points in X and Y. This energy cost function is a heuristic
form of geodesic distance matching where a filtering and
weighting scheme is applied to the geodesic distances to
make the registration more robust to imperfections of 3D
scanning systems [16]. The GH algorithm results in an O(n?)
sized MRF which is illustrated in Fig 4.

The second step is a Global Optimal Matching search
using (TRW-S): TRW-S uses a global convex non-linear
energy optimization to the explore the MRF problem and find
a optimal matching candidate solution in O(kn*) time [21],
where the registration solution calculates n matches and each
scan has n features [16]. TRW-S is a popular MRF solver
due to its fast convergence and its ability to compute a lower
bound energy. It can report a theoretical best solution (the
lower bound) which helps to choose a ”k” constant for the
overall O(kn*) complexity [22]. Full details on GH+TRW-S
can be found in [16] and [21].

The major challenge to acclerating this algorithm is effi-
ciently constructing O(n*) MRFs during the GH step, and
then rapidly exploring this O(n*) problem space in the TRW-
S phase. GH+TRW-S does not map well to most parallel
architectures. In particular TRW-S has data dependencies that
make it difficult to schedule.

TRW-S and other message passing based accelerators typ-
ically optimize DRAM streaming of the (%) messages [17],
[18], [2], [19]. However, we found GH+TRW-S to be mem-
ory bound when the MRF is ignored, since the TRW-S solver
must stream in an MRF from the GH step as shown in Fig 2.
The problem size does not need to be very large before the
O(n*) MRF exceeds typical cache sizes and accelerators
become bottlenecked. e.g., a 64 point registration requires
66 MB of cache [20].

A. Dynamic MRF Generation

Fig 2 shows that video rate performance is not possible
using the baseline GH+TRW-S algorithm on any reviewed
accelerator. 464GB/s bandwidth is required to achieve 20
scan/s video rate on a 110 node registration. Typically,
hardware acceleration platforms have significantly less
bandwidth. For example, our Arria 10 + Xeon hardware can
only stream the MRF to a TRW-S accelerator at 12GB/s.
To reduce this bandwidth requirement, our algorithm uses
a novel approach called dynamic Markov random field
generation (DMRF).
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(a) A MRF "Slice” (L') is the n? (b) The complete MRF “Loaf”
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Fig. 4: A MRF registration problem is constructed using two
matrices X and Y of geodesic distances (see Fig 3). A good
labeling is one where geodesic distances are the same (X, ,—
Y; ; = 0). Therefore X — y; ; are all n? potential matches
for one y € Y. This means checking all potential matches
requires creating an MRF by subtracting all y € Y from
X. We abstract this as a 3D tensor "loaf of bread”: L =
[X —y11,.--, X — Yn.n] of order O(n?).

Our DMREF algorithm dynamically computes the “slices”
shown in Fig 4a as they are needed by TRW-S. DMRF is
able to reduce MRF storage space because the number of
independent random variables is actually far lower than n*
for registration. Fig 3 shows only 2n? variables are used to
construct the O(n*) MRF for X and Y depicted in Fig 4b.
DMREF dynamically evaluates the GH energy cost function:

E = (exp(—min(z/0,y/0)) - min(jz —y|,7))-¢ (1)

for each slice in Fig 4b where o and 7 are GH filter and
weight constants, respectively. ¢ is a normalization factor
for numerical stability [16]. Dynamic evaluation means only
the 2n? independent MRF variables are transferred to our
accelerator. Fig 5 shows our platform is compute bound for
larger problems with this approach. eg. 0.08GB/s is used for
20 scan/s 110 node DMREF transfer versus 464GB/s for MRF.
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Provided X and Y are available, Eqn 1 can be evaluated
simultaneously for the entire MRF. This makes generating



loaf slices with DMREF an effective approach. Our algorithm
integrating our DMRF generation into TRW-S optimization
is described in Alg 1. We call this modified algorithm
TRWL-S.

Algorithm 1 TRWL-S
1: procedure DMRF(X,Y,s,t,q)
2 y = Y/[s,t]
3 return F(X,y).q
4: procedure UD(M, L', W, s,t)
5 off =T[s,t]oW — M > o is Hadamard productf
6: G'[1:n,x] = L'[1: n,«]+ off
7
8
9

> see Eqn 1

M’ = COLMIN(G")
return M’ - MIN(M")
: procedure TRWL-S(U,X,Y,q,7)
10: M|, *] + [0]
11: while j-=1 > 0 do

> U is optional*

> j is number of passes

12: Wi+ Wy« U

13: for s = n; s>0; s-=1 do > Back pass (TRW-S)
14: for t=s-1; t>0; t-=1 do

15: Wy[t]+= M[t, s]

16: Wy [t]+= M[s, t]

17: for t=s-1; t>0; t-=1 do

18: L' + DMRF(X,Y,s,t,q)

19: M|t, s]= UD(M]t, s], L', Wy[t], s, )1

20: for t=n; t>0; t-=1 do > Front pass (ours)
21: for s=0; s<t-1; s+=1 do

22: W [t]+= MIt, s]

23: Wy [t]+= M]s, t]

24: for s=0; s<t-1; s+=1 do

25: L' + DMRF(XTY,s,t,q)

26: M[s, t]= UD(M[s, t], L', W¢[t], s, )T

27 S +SLN(M, G, U)f

28: return S

*xU is an optional TRW-S seed and may be set to zero [21]
1L, message update (UD) and solution (SLN) detailed in [21]

B. Scheduling Optimizations

TRWL-S must be scheduled carefully due to the data
dependency on W{t] in the UD() step. Alg 1 shows two
scheduling options for the two optimization passes of TRWL-
S ”Back Pass” uses the naive TRW-S scheduling which
is sub-optimal. The serial dependency issue is illustrated
graphically in Fig 6a. Our “Front Pass” schedule in Alg 1
ensures that the first M[t] required to be added to a Wt
in the next loop of the front pass is computed first and is
shown in Fig 6b. This scheduling optimization is important
for effectively speeding up TRWL-S. Data dependencies
prevent a fully parallel schedule and so pipelining is a better
execution scheduling option. Without our schedule, TRWL-S
would suffer pipeline stalls of up to n x (UD() + MRF())
time. Since both of these functions are a O(n?) compute
bottleneck, total stall time without our schedule is on the
order of O(n?).
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Fig. 6: TRWL-S serial data dependencies between M and
W. s is the inner loop and is completed once before
traversing along ¢. Fig 6a is the "Back Pass” TRW-S schedule
in Alg 1 and Fig 6b is our “Front Pass” schedule in Alg 1.
M[s, ] depends on W[s] from ¢ — 1 which in turn depends
on M[x, s] from ¢ —2. Our schedule in Fig 6b is better suited
to pipelining as we schedule the compute of M to meet the
dependencies of W at ¢ 4 1 as early as possible.

C. MRF Optimization

The MRF cost function in Eqn 1 uses the exp function
which is expensive in terms of both resource usage and
latency. To improve this, we define a transformed cost
function in Eqn 2:

E = max(a,b) - min(|z — y|, 7) )

where a = ge*/% and b = ge~¥/?. The transformation is
valid because exp is a monotonic, increasing function of its
argument, and max(—u, —v) = —min(u,v) is an identity.
The values of a and b are pre-computed on CPU using O(n?)
work. We include the (positive) scaling term ¢ in a and b
when factoring out the expensive exp to reduce even further
the total compute required for the O(n*) FPGA work .

D. Precision Optimization

In order to maximize the performance, we aim to saturate
the FPGA multiplier blocks and other arithmetic resources.
Key to this is using fixed point arithmetic since the target
Arria 10 FPGA has more integer DSP multipliers than
floating point multiplier blocks.

The GH+TRW-S baseline uses 64 bit floating point num-
bers. The Arria 10 DSP multipliers are 18 bits wide, so
ideally we would prefer to reduce baseline precision to
match the DSP multipliers. At the same time, in order
to maintain accurate registration, the accelerator can not
arbitrarily reduce the TRWL-S word width.

We analyzed the impact of reduced word width by sweep-
ing fixed point precision of GH+TRW-S on our data sets to
verify reduced precision did not negatively impact registra-
tion performance. Fig 7 shows that the energy minimization
(registration capability) of GH+TRW-S is not greatly affected
until we reduce the data representation to a 8 bit fixed
point. We conservatively choose 16 bit fixed point since this
precision maps well to the Arria 10 DSP multipliers, reduces
memory footprint by a factor of 4X over GH+TRW-S, and



does not greatly impact the registration quality on our tested
data sets. we do note that other data sets may vary although
16 bits is acceptable across our two tested data sets.

3D Non-rigid registration energy of mid level algorithm loop
with various numerical precisions (Serial TRW-S)
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Fig. 7: The registration energy vs. the algorithm iteration
for different data types. A lower energy indicates a more
accurate registration. The 64 bit float, 30 bit fixed, and 16
bit fixed all have similar registration energy. The 8 bit fixed
is significantly worse.

IV. ACCELERATOR ARCHITECTURE
A. System Overview

Our accelerator is built using a 14 core Intel Xeon
Broadwell coupled to a Altera Arria 10 FPGA via QPI and
PCle interconnects. The portions mapped to the Xeon were
implemented in C++. The portions mapped to the FPGA
were designed using Chisel3 [23]. The CPU to FPGA mem-
ory interface was built using Intel’s Rapid Design Methods
for Developing Hardware Accelerators methodology [24],
which is optimized for CPU to FPGA data transfers of cache
line granularity, i.e., 32 16 bit fixed precision numbers per
FPGA cycle. Because of the CPU/FPGA memory interface,
it is efficient to process data in vectors of 32 numbers and
all block to block data transfers in Fig 8b use buffers 32
elements wide.

Fig 8 provides a high level block diagram of our het-
erogeneous non-rigid 3D registration accelerator. The Host
Xeon provides high-level control, executes initialization pro-
cedures, and performs the mathematical transforms needed
for registration. The functions DMRF() and UD() from Alg 1
are mapped to the FPGA since they can benefit from a
parallel implementation. W operations from Alg 1 are also
mapped to the FPGA. This is because the accelerator would
suffer execution starvation from serial dependencies on W
(see Fig 6) if the W variables had to be maintained by the
CPU and streamed in as needed. The blocks in Fig 8b are
each detailed in Sections IV-B to IV-E.

B. Gen and Min

”Gen and Min” in Fig 8b implements DMRF() and the
COLMIN() of UD() in Alg 1 since these are the compute
bottleneck of TRWL-S, both having O(n?) complexity per
slice. Both DMRF() and COLMIN() are SIMD which our

procedure DMRF(X, Y 5.1.q)
return F(X, Y([s.t]).q Host Xeon | | Host
procedure TRWL-5(U. X. Y.q.j) Mem
while j- >0 do I |
Wi+ Wy« U mo mi
for t=n, >0, t- - do
for s=0), s<t-1, s++ do Weight Update &LJ
Welt]+= M]t.s
Weltl4+= M][s,t
for s=0, s<t-1, s++ do res off
G' — DMRF(X".Y.s.t.q) AB,
]/~ JUD(MIsAL,.G", Wy Msg ||Genand| %Y
S +SLN(M, G, U) Clamp Min
return 5 FPGA

(a) TRWL-S pass with hardware
mapping highlighted

(b) Xeon/Arria 10 TRWL-S
accelerator block diagram

Fig. 8: Heterogeneous TRWL-S accelerator block diagram.
Fig 8a colours a TRWL-S pass to indicate how we partition
the algorithm on our accelerator. Fig 8b is our Xeon/Arria 10
3D non-rigid registration accelerator. Each hardware block is
coloured to match the portion of TRWL-S described in Alg 1
it is responsible for. We omit the Backward pass for brevity.

accelerator takes advantage of as shown in Fig 9. The
block depicted in Fig 9a shows how larger matrices, for
example, 128 x 128, are mapped to 4 x 4 virtual tiles
using time-division multiplexing. Our architecture physically
implements 32 x 32 compute cells. The tile arrangement can
be modified at runtime to describe registration accelerators
for different problem sizes (multiples of 32.) Eqn 2 shows
that A and X are constant factors for every loaf slice and
so our architecture loads the appropriate a and x into the
cell ram shown in Fig 9b once only per registration. We use
double buffering to allow tiles to begin work as A and X are
loaded from CPU. Each cell implements Eqn 2 for DMRF()
and adds “off” as the second step of UD() in Alg 1. Each
cell’s output is then fed to COLMIN() hardware which is
shown as the min tree block in Fig 9b. Min tree performs
the n wide vector min using a log tree arrangement with 32
word inputs. Processing a slice takes 16 cycles (one cycle
for each tile.) The gen and min unit is deeply pipelined (14
stages) giving a L' slice per FPGA clock ratio of 1:1.

C. Message Clamp

Msg Clamp or “message clamp” in Fig 9c implements
the final MIN() step of UD() in Alg 1. Using the separate
message clamp block simplifies our architecture. It is broken
out from “gen and min” (Section IV-B) because MIN() is
an aggregating step that is not a compute bottleneck and is
parallel in an orthogonal way to COLMIN() of the gen and
min block. Msg clamp uses the same log tree vector min
concept as gen and min but cycles the least output several
times through the tree. This is because the input from gen
and min is a cache line (32 numbers) wide and so least=
MIN(z) should be run once for every tile of gen and min.
The FIFO in the clamper delays arrival of results from the
first tile to a 32 wide vector subtract until a true MIN() has
been computed. M[.,.] is computed as the result of the vector
subtract and streamed to the weight update block.
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(a) Gen and Min tile and cell architecture

(b) Cell and colmin block

(c) Msg Clamp block

Fig. 9: Gen and Min block. This block is dedicated to the O(n?) per slice compute bottleneck of TRWL-S. It computes
DMREF() loaf slices from Alg 1 and n vector mins of that slice. Vector mins are the bottleneck of UD() from Alg 1. We
achieve high performance with an array of 32 x 32 cells each containing a 14 stage pipeline as shown in Fig 9a and detailed

in Fig 9b.

D. Weight Update

“Weight Update” in Fig 10 maintains the W weight
variables in Alg 1 because they are on the critical path
to meet the serial dependencies of TRWL-S and round trip
latency is too high to manage W on CPU. W is therefore
stored on the FPGA in BRAM and is optionally initialized
to U by the CPU. We re-order weight update as shown in
Fig 10a so that the dependency of ¢t + 1 can be met by
forwarding M[., ] + W/z]. The forwarding stage is shown
as the ”Backend” in Fig 10a. We manage meeting the W de-
pendencies of gen min (Sec IV-B) with the “Frontend” block
in Fig 10a. This block tracks s and ¢, using these variables
to route the correct message, M., .] and weight W{.]. If the
required dependency can’t be satisfied, weight update will
stall the accelerator. In practice stalls are negligible (0.2%
stall cycles per MRF). If dependencies are met, W|.] and
M]., ] are scaled by I' as shown in Fig 10b which is the
first step of Alg 1 UD(). The result off” is then passed to
”gen and min”.

procedure TRWL-S(U, X, Y,qJ)

for t=n, t>0, t- - do
, S<E1, s++ do
MisuFrontend
for s=0, s<t-1, s++ do

G’ < DMRF(*)

M [t]+= UD(M[s,t], =, W[t])
for s=0, s<t-1, s++ do

wylt+= MisuBackend' - -[- ===

. [

N
BRAM\J res
depth=512 12

torgs

:

return S

(a) Partitioning and scheduling
scheme of the Weight Update block

(b) Data flow details of the
Weight Update block

Fig. 10: Control and Data flow views of the Weight Update
Block. Fig 10a shows a rescheduling of W computation
that allows dependency forwarding of Alg 1 from t to
t + 1. Fig 10b details W processing. We use a local copy
of W to efficiently compute dependencies. We perform
canonical tree re-weighting with I' in the “frontend” only
for efficiency [21].

E. CPU

The CPU is responsible for control and data flow, making
our 3D registration accelerator heterogeneous.

On the control path; The CPU starts TRWL-S and deter-
mines the number of iterations. We hard coded j in Alg 1
to be 20 iterations to match the GH+TRW-S base line for
performance comparison. However, termination can also be
determined dynamically by comparing the SLN() registration
energy (solution quality) to either the lower bound [21] or
an experimentally determined value.

The CPU can also optionally specify registration candidate
solutions at each pass via the U parameter. We use the same
U as the baseline for our performance evaluation.

On the data path; The CPU pre-processes registration
problems by computing A and B before starting TRWL-
S as described in Section III-C. Other pre-processing steps
include computing the baseline ¢ normalization factor [16]
and converting all numbers to 16bit Fixed point representa-
tion. Since the M messages require O(n?) storage, the CPU
streams them off and on to the FPGA as needed. Finally the
CPU decodes the 3D registration solution by implementing
SLN(Q) [21].

V. EVALUATION

We evaluate our system accelerator performance against
a software implementation of the baseline GH+TRW-S and
software TRWL-S. We compare only TRWL-S : Y —
X against GH+TRW-S : Y — X since we do not re-
implement the input stage (geodesic distance computation)
or the output stage (expansion move upscaling). The baseline
uses a state of the art implementation of TRW-S which has
been enhanced with openMP to run a bottlenecking function
(UD()) from Alg 1 in parallel when possible [20]. Our
TRWL-S accelerator significantly outperforms the baseline
implementation (== 600X faster). This would make a holistic
baseline software to accelerator comparison uninteresting.
Therefore in this section we use the baseline to evaluate reg-
istration quality of the accelerator, but use a software TRWL-
S implementation to compare other metrics. Specifically we
evaluate accelerator run time performance and system power
consumption of the accelerator against software TRWL-S.
Finally we evaluate the scalability limitations of our TRWL-
S non-rigid 3D registration accelerator.



Dataset Mean
Name Scans n  qualityd
Liver Surgery 25 9% 1.3%
FAUST 50 9% 1.9%
Liver Surgery 25 128 1.8%
FAUST 50 128 1.7%

(a) Registration § from baseline (lower is better)

o
\= b

(b) Baseline: FAUST  (c) Ours: FAUST (d) Baseline: Surgery (e) Ours: Surgery

Fig. 11: Summary of TRWL-S registration performance (Table 11a) and comparisons to GH+TRW-S (Figures 11b to 11e)

A. Registration Quality

We compared registration performance of TRWL-S to the
baseline using the FAUST pose estimation database [25]
and our own surgical video data set. Figure 11 shows the
results. We calculate the mean difference of solution energy
(registration quality) between baseline TRW-S and TRWL-S
in Fig 11a accross our data sets. The average energy differ-
ence is small since the algorithms are equivalent except for
the reduced numerical precision and registration results are
therefore very similar. Figures 11b to 11e show a qualitative
comparison of the 3D registrations of both algorithms on the
two different data sets. In general TRWL-S appears to have
good agreement with the baseline.

B. Accelerator Performance

We implemented the accelerator on a Xeon-FPGA plat-
form using the Arria 10 10A115U3F45E2SGE3 FPGA.
We used Chisel3 [23] and the Rapid Design Methods For
Developing Hardware Accelerators [24] methodology for
implementing the system. Chisel3 enables highly parame-
terized, clock accurate RTL descriptions to be developed in
a concise and effective manner. We set the active matrix
size to be 32 x 32 so that the Gen and Min component
uses 1024 of the 1518 DSP blocks available on the FPGA.
All components of the system together occupy 42% of the
available ALMs (this includes both the Blue Stream, the
interface to the Xeon provided by the platform, and the Green
Stream, the hardware specific to this accelerator.) Timing
converged to 400 MHz in the Blue Stream and 100 MHz in
the Green Stream (no timing violations.) Other FPGAs with
more compute resources (e.g., the Stratix 10 with up to 5760
DSP blocks) and higher clock rates (200 MHz or more can
likely be achieved with more implementation work) would
improve the performance proportionally.

C. System Power Consumption

We measured power consumption on the physical
platform. The measurement system provides a breakdown
by: CPU power, DRAM power, Core FPGA power,
and Other FPGA power. For the software-only case, we
measured power on the same system. Removing the FPGA
components from the software-only case, we see a 69.6 W
for software only vs. 72.8 W for the accelerated system.
The runtime for the accelerated system is ~ 84X smaller
(compared with a single core software-only implementation),
resulting in an energy per computation benefit of ~ 81x.
The runtime and energy benefits are less when compared to

a multi-threaded software implementation (10x and 15X,
respectively) but still significant.

TABLE I: Measured Power for the Accelerator Computation

CPU (W) FPGA (W) Perf per Frame
Name Core DRAM Core Other time(s) energy(J)
FPGA Accel 242 281 8.7 11.8 0.05 3.6
SW (1 thrd) 415 281 (7.1) (11.8) 4.22 294.0
SW (14 thrds) 86.0 28.1 (7.1) (11.8) 0.50 55.2
Ratio (1) 1.71  1.00 0 0 84.5 80.8
Ratio (14) 355  1.00 0 0 10.0 15.2

"FPGA Accel” are power metrics for our non-rigid 3D
registration TRWL-S accelerator system. "SW (1 thrd)/(14
thrds)” are metrics for software-only TRWL-S registration
using 1 and 14 CPU hardware threads respectively. Adding
threads makes a CPU compare increasingly favorably with
FPGA, however the FPGA always maintains a large energy
and speed advantage in our system

D. Scalability

The algorithm transformations described in Section III
results in two major limits to scalability: 1) the O(n?) band-
width requirement for transferring () length n messages to
and from memory, and 2) the O(n*) compute required to
perform the Gen and Min operations. Figure 12 show both
limitations on the same log-log graph.

10000 TRWL-S Compute and Memory Bandwidth Requirement Scaling
T T T FrrrTE T T

Max System Bandwidth Coi ute Requirement
=== System Memory GB/s

== Systemn Compute GOP/s

1000 |

100 pmemem——————

10 F

ory Requirement

0.01 g

Bandwidth (GB/s}, Compute (GOP/s)

0'00120 5‘0 6‘0 TID BID 9‘01(‘]0 260 300
Problem size (n)

Fig. 12: TRWL-S scaling on a Xeon Aria 10 platform. Mem-
ory bandwidth scaling is dominated by message streaming
which is O(n?). Compute scaling is dominated by the O(n?)
DMRF computation. Compute must improve by 17x (using
a faster clock or larger FPGA) before platform bandwidth is
the performance limiter (at n=256).
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Compute can be increased by clocking the system faster or
utilizing an FPGA with more resources (DSP blocks). The
horizontal line showing the compute limit would increase
proportionally. It can increase 17x before the platform band-
width becomes the bottleneck around n = 256.

VI. CONCLUSIONS

We describe a heterogeneous CPU/FPGA accelerator for
real-time non-rigid 3D registration. The design uses a MRF
transform and scheduling optimizations to achieve 20 regis-
trations per second performance. Experimental results show
clear performance benefits of the accelerator. Our system
achieves ~ 600 x speed up with a maximum 1.9% difference
in registration quality over a software only TRW-S non-
rigid 3D registration baseline. Additionally we find a ~ 84 x
speed improvement and ~ 81x energy reduction of our
heterogeneous TRWL-S architecture versus a software only
implementation. In future work we plan to further reduce the
1.9% quality difference by tuning the registration parameters
of TRWL-S and to investigate current scaling limitations with
our approach.
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